Linear Magnetoresistance in a Quasifree Two-Dimensional Electron Gas in an Ultrahigh Mobility GaAs Quantum Well.

نویسندگان

  • T Khouri
  • U Zeitler
  • C Reichl
  • W Wegscheider
  • N E Hussey
  • S Wiedmann
  • J C Maan
چکیده

We report a high-field magnetotransport study of an ultrahigh mobility (μ[over ¯]≈25×10^{6}  cm^{2} V^{-1} s^{-1}) n-type GaAs quantum well. We observe a strikingly large linear magnetoresistance (LMR) up to 33 T with a magnitude of order 10^{5}% onto which quantum oscillations become superimposed in the quantum Hall regime at low temperature. LMR is very often invoked as evidence for exotic quasiparticles in new materials such as the topological semimetals, though its origin remains controversial. The observation of such a LMR in the "simplest system"-with a free electronlike band structure and a nearly defect-free environment-excludes most of the possible exotic explanations for the appearance of a LMR and rather points to density fluctuations as the primary origin of the phenomenon. Both, the featureless LMR at high T and the quantum oscillations at low T follow the empirical resistance rule which states that the longitudinal conductance is directly related to the derivative of the transversal (Hall) conductance multiplied by the magnetic field and a constant factor α that remains unchanged over the entire temperature range. Only at low temperatures, small deviations from this resistance rule are observed beyond ν=1 that likely originate from a different transport mechanism for the composite fermions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetoresistance in a High Mobility Two-Dimensional Electron System as a Function of Sample Geometry

In a high mobility two-dimensional electron gas (2DEG) realized in a GaAs / Al0.3Ga0.7As quantum well we observe changes in the Shubnikov-de Haas oscillations (SdHO) and in the Hall resistance for different sample geometries. We observe for each sample geometry a strong negative magnetoresistance around zero magnetic field which consists of a peak around zero magnetic field and of a huge magnet...

متن کامل

Quantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls

The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls...

متن کامل

High mobility, large linear magnetoresistance, and quantum transport phenomena in Bi2Te3 films grown by metallo-organic chemical vapor deposition (MOCVD).

We investigated the magnetotransport properties of Bi2Te3 films grown on GaAs (001) substrate by a cost-effective metallo-organic chemical vapor deposition (MOCVD). We observed the remarkably high carrier mobility and the giant linear magnetoresistance (carrier mobility ∼ 22 000 cm(2) V(-1) s(-1), magnetoresistance ∼ 750% at 1.8 K and 9 T for a 100 nm thick film) that depends on the film thickn...

متن کامل

Low-Frequency Microwave Induced Quantum Oscillations in A Two-Dimensional Electron System

We study the magnetoresistance of an ultrahigh mobility GaAs/AlGaAs two-dimensional electron sample in a weak magnetic field under low-frequency (f < 20 GHz) microwave (MW) irradiation. We observe that with decreasing MW frequency, microwave induced resistance oscillations (MIRO) damp and multi-photon processes become dominant. At very low MW frequency (f < 4 GHz), MIRO disappears gradually and...

متن کامل

Two-dimensional electron-gas actuation and transduction for GaAs nanoelectromechanical systems

We have fabricated doubly clamped beams from GaAs/AlGaAs quantum-well heterostructures containing a high-mobility two-dimensional electron gas ~2DEG!. Applying an rf drive to in-plane side gates excites the beam’s mechanical resonance through a dipole–dipole mechanism. Sensitive high-frequency displacement transduction is achieved by measuring the ac emf developed across the 2DEG in the presenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 117 25  شماره 

صفحات  -

تاریخ انتشار 2016